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PERTURBATION SOLUTIONS FOR VARIABLE ENERGY BLAST WAVES

Edward T. Pitkin

ABSTRACT

The trajectory of and the flow field behind blast waves with time varying
energy input is determined. Freeman's? Lagrangean coordinate formulation is
modified to include both the geometric factor, a, for plane, cylindrical and
spherical shocks and also non-integer values of B8, the energy input parameter,
in a single computational algorithm. BNumerical problems associated w:ltl; vanish-
ing density at the fictitious piston face are then examined and solved. Secoad
order perturbation solutions about the infinite strength shock are then ob-
tained in Sakurai's! inverse shock Mach number expansion parameter for 0 $ 8 <
a + 1. Tables and graphs of significant numerical coefficients are presented
for comparison to and extension of results of other authors. Graphs of typical
shock trajectories and flow field density, pressure and velocity variations

are also presented and discussed.
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PERTURBATION SOLUTIONS FOR VARIABLE ENERGY BLAST WAVES
!

Edward T. Pitkint
1. INTRODUCTION

The analytical theory of blast waves has been the subject of intensive
study by many investigators since the pioneering work of G. I. Taylorsabout
thirty years ago. A large fraétion of this work concerns waves of constant,
instantaneously supplied energy which propagate and decay according to the
dictates of inviscid isentropic flow behind the wave and Rankine-Hugoniot
conditions at the wave front. This work has been well summarized by Sakurail
who has also developed an efficient method of expanding the general solution
nbout. the simpler limiting solution for the flow behind-a very strong shock.
Furlhermore, he has shown that the gquare of the inverse shock Mach number is
a most convenient and natural parameter to use for this expansion.

A lesser amount of work has been devoted to analysis of blast waves of
variable energy input. In 1957 Lees and Kubota® examined this case briefly
in connection with the hypersonic blast wavs analogy and Rogers3 presented
the limiting strong shock solution in 1958. Mcr+ .+~2utly in 1968 Freeman?
examined this case in connection with cylindrical spark channel formation
from exploding wires and Dabora’ has applied variable blast wave techniques
to droplet explosions in spray detonations.

The work reported hoere in basleully nn extension of Freeman's approach

Lo cover the full spectrum of plane, cylindrical and spherical variable

+ Professor of Mechanical and Aerospace Engineering, The University of
Connecticut, Storrs, Connecticut 06268
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energy blast waves within a single analytic formulation and computation algo-
rithm. It also contains corrections to some numerical errors discovered in
Freeman's paper. As a consequence Freeman's notation has been adopted com-
pletely and derivations given in his paper have only been summarized here.
His major contribution was to recast Sakurai's expansion procedure in La-
grangean coordinates, replacing distance from éhe origin, r, with mass, m, as
an independent variable, but retaining the inverse shock Mach number as the
expansion parameter.  The advantage is two fold: (1) the number of differ-
ential equations that must ultimately be integrated numerically is reduced by
neurly a factor of two, and (2) the position of the fictitious mrving piston face
which supplies the variable energy is uniquely defined to be at mass = 0. In
Kulerian coordinates precise determination of the piston position can be a
very difficult numerical task.

In sections 2 and 3, the equations of motion ani the strong shock solution
are reviewed. The expansion procedure is outlined in section 4 and a method
of extrapolating the numerical solution to the mass origin is discussed in

section 5. Numerical results are then summarized and discussed in section 6.
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2. EQUATIONS OF MOTION

Let Po and p, be the pressure and density in the undisturbed medium
while r is the radius from the origin to an arbitrary point in space and M is
the total mass contained between the origin and r. Let r = R at the shock
front so that the volume behind. the shock front, when filled with gas of orig-

inal density, will contain the mass

Mg =

2ana(3-a)(2Ra+lpo/(a+l) (2.1)

where o is a geometric parameter with values 0, 1, and 2 for plane, cylindri-
cal and spherical waves respectively. Finally let u be the speed at any
point and U be the speed of the shock front, C the speed of sound and Y the
specific heat ratio in the undisturbed gas.

It is convenient to introduce non-~dimensional variables. For mass, rad-

ius, velocity und density take

m & M/ (2.2)
a?fr/R (2.3)
£ & wu . (2.4)
h £ p/og (2.5)

while the square of the inverse shock Mach number
y & c2/u? = c2/(ar/at)? (2.6)

may be combined with P, to define a variable related to non-dimensional pres-

sure

g = py/po (2.7)

An arbitrary non-zero initial radius of the shock, R, is then used to define

e g
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a characteristic time
A : s L
to = Ro/C (2.8)

which.may then be used to non-dimensionalize time through

Hne>

)

t/to : (2.9)

while the shock front coordinate, R, is non-dimensionalized by
A
z = R/RO (2.10)

F Finally the decay index, a ratio of the percentage changes of shock Mach num-

ber and radius, as introduced by Sakurail, is

= _ -2Rd%R/dt? ¢
v =4S SR e

the latbLer obtained by use of (2.6) and (2.10).
The equations of fluid flow behind the shock wave have been derived in
Lagrangean coordinates by Freeman?. Only the results will therefore be sum-

marized here. First the density at any point is given by
h = p/og = 1/[(a+t1)a%a/om] (2.12)

and the non-dimensional velocity is

oa aa
f = a—(a+l)m55'+ Arg;-° . (2.13)

Beginning with the assumption of a purely isentropic process behind the shock

for each mass element it follows that

a(p/e ) /3y = 0 ' (2.14)
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which upon using the non-~dimensional variables above can be shown to lead to

the following in Lagrangean coordinates,

ada, 1 3g)la, 22
(o+1)m [(a 5m T Yg 3m Bm " 3m2 Y am

ada, da 32 ]
[(a 3y Yg ay m * meyd =0 - (BLas))

Similarly Newton's second law for the mass element

Su _ dudy _ a_a(3-a)/23p ‘
3% = 3y at - -ler) I (2.16)
lead:: to
§a+12_& 2a+) 3a 2_,382a
- + (a+l>-——m2 E + (a+l) mL-Tam
32a | 2+) 3a A, ]_
+ ay[-2ler1)nl o agt o Rl y-g-}ﬁ 0, (2.17)

The energy contained between the origin and the shock is the sum of the kine-
tic energy and the internal energy. The increment of energy over that of the

same volume of undisturbed gas is

MOZ
= . P Po
"f(z Y Ey (Y-l)%) a . (2.18)
(o]

Converting to non-dimensional form, using Equation (2.12) and letting a prime

designate 3/9m gives

Dl 3 iz s RS SEEE
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1
Ep 1 ( f2 auaO 1
= - + - .
(u+1§p°M° v| 2Dy * v - e (e (2.19)
0

Letting b = 1/[(y-1)(o+1)], E, = %/(2"(3-6)/2,a and designating the integral

1

J after Sakurai® this becomes

Eq _
atl
PoR

-b - (2.20)

<

P
If the total energy behind the shock varies as a power of time according to

the following rule

B = R po(t/t0)?, (2.21)

the energy equation reduces to the simple form

L1250 = 3fy - b, (2.22)

When 8 = O the energy is constant, a case examined by many investigators and
we'l documented by Sakurai. Letting R take non-zero values allows one to model
a fairly wide range of energy inputs which can be further extended with some

modification of (2.21) as has been shown by Freeman?.
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3. STRONG SHOCK LIMIT

At very large shock Mach numbers y + 0 and J/y >> b so the energy equation

reduces to & simple form consistent with Rogers'3 similarity solution for the

equation of motion for which the shock front a?vances according to

R = E?gﬂcz/anotg]l/ (a+3)in _ P (3.1)
where n is related to R, o and A through

n = (2+8)/(a+3) = 2/(Ay*2) (3.2) i
from which the decay index for strong shocks is

Ao = 2(a*1-8)/(2+8) (3.3)

The zero subscripts on X and J are used to designate the strong shock case
here.

Note also that

4z _to@R_U_ 1 b

do "R, dt  C ;%' (3.4)
while from (3.1)

dz/dw = nz/w (3.5)
so that

z2 = m/ny;i (3.6)

Combining this with the strong shock energy equation (b = 0) yields

/)

2= zgy' ' to (3.7)




where

2y = (né/Jo)l/(a+l-B) N
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4. OUTLINE OF SERIES SOLUTION

Equations (2.15) (2.17) and (2.22) comprise a system of three dependent
variables; A, 4, and g and two independent variasbles; m and y. Sakurai has
shown that A is a function of y only and that the pressure, density etc. are
slowly varying functions of y. He therefore suggests expansion in powers of
Y to reduce the number of independent variables. In the Lagrangean coordinates
used here this has the very desirable effect of reducing the partial differ-
ential equations to ordinary differential equations.

The expansions, taken about the strong shock solution for which y =0,

ure

A(y)=>‘o+>‘1y+"2y2+-°'° (k.1)
a(m,y) = ag(m) + a (my + a,(m)y® + « « « « (4.2)
glm,y) = g (m) + g (m)y + g (m)y? + « « « - (4.3)

By similar reasoning the equation for the shock front is expanded about the

strong shock "zero order" solution (3.7) as
1 9
Z= 25 Y /AO (] + zl yt+ ZZ yZ + o o o ) . (’4.’4)

Kquation (3.4) which applies in general can be integrated to give:

Substituting for z and taking z = 0 at w = O then gives an expansion for the

time variable as & function of y and 2z
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[}

W= zoy(A°+2)/2A°(w° twzy b oeee + szJyJ + eoo) (4.6)
]

where
wy = (29a+2)/((25+41)1 #2) (L.7)

Noting from (2.13) that £ = £(A, @, m) it is clear that substitution of
(k.1 - 4.3) into (2.19) will yield integrals in ascending powers of y so that

J can be expressed as
- 2 - L] L]
J=J,+ 3y +3,y°+ (4.8)

These expansions are then substituted into the isentropic, momentum and
energy equations (2.15), (2.17) and (2.22) and the coefficients of like povers
of y equated to give perturbation equations of ascending order. In the isen-
tropié and momentum equations this procedure yields ordinary differential
equations for ay and 53 with &jentering as a parameter. These must be solved

subject to the shock jump boundary conditions.

a (1) =1 a (1) =0

8,(1) = 2y/(y+1) g,(1) = (1-v)/(y+1)

] — 1 [] = 2

461 = G () = @G -

The remaining coefficients are all zero at the shock. Fortunately the
successive orders of approximation to tﬂe isentropic equation yield intermedi-
ate integrals for 8y These may then be used in the momentum equation which

must, be solved by numerical integration from the shock front to the mass

- 10 -
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!
origin. The equations and solutions for each order will be discussed in the

following sections.

Now consider the energy equation. Putting the expansion (L.L), (L.6)

and (4.8) into (2.22) gives

B B
Zo (wo + w2,y + w222y2 + ce0)

+
=23 M1t zy ¢z °°°)a+l(Jo'+(Jl-b)y + 3,y2 + e0). (b.20)

The two series with exponents may be converted to simple power series by means :
of' the binomial formula if the first term of each is larger than the sum of the
remaining terms, This is certainly true for smell y. Multiplying out on the
right and equating coefficients of like powers of y then yields relations be-

tween JJ and zJ:

(a+1)
)

P o

- B B-
Jo = o 2o

| I, /dg = [B“’l/“’o - (a+1)] z, +b g
2 ]
s P 8 ol - 2] ,

o

3 [EE’.&- (m»,l):'z2 . (k.11)

Wo

These relations are equally valid for integer and non integer values of 8.

Freeman? only considered integer values. Substituting (4.4) into (2.11) and

solving for the zy gives

- 1] =

. i PRSP S




2y = —Al/xg
= 2
z, = -[xz + (1+xo)z1x1]/2xo
23 = =[Ag + (142 )z)0, + (1422 )z,),1/302 (k.12)
y 5

which may then be used in (4.11) to give relations between the Ay and Jy.
These will be used later to evaluate the AJ for éach order of approximation.
The solution proceeds in ascending orders pf approximation. The zeroth
order, corresponding to the strong shock solution with y + O, is used in the
computation of the first order solution and the first order solution is then
used .o compute the second and so forth. In this paper ghe solution will be

carricd only to the 2nd order.

'The zeroth order approxiﬁation to the isentropic equation is
' A ' "
8 _[ o ( 4 4 2 ,] .
e lemt e T (k.13)

vhich Freeman has shown to have an integral

& = K°/‘ao"«a’,)”m‘°/ (& (4.14)
whoere
" y-1
Lo y+1 (a+l)(Y+l) (4.15)

The momentum equation in the zeroth approximation becomes

= 12 =
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ay = (B a!-Ca - So"-oa"o/m)/% i (4.16)

where

>
"

o = (a*1)y [agg,/as - (a+l)u?] |

tc
H

(a+l)mY(a+Xo/2) v

Co

YA /2 + a(a+1)goaga;/a§] 1 (4.17)

The first approximation to the energy integral, J, of (4.8) will be obtained by

evaluating
1
_ Y (ag=(a+1)mal)? adal
i) = [.2_ %.l__n + 50;8%0.] dm (4.18)

along with integration of (4.16) from the shock front to the mass origin.
(Note that Freeman's forms of this and higher order integrals are only correct
for a = 1.) The first term of this expression is a measure of the kinetic en-
ergy behind the shock and the second term is proportional to the internal ener-
gy so these two factors can easily be accumulated separately. The integration
of a, is initiated with the boundary conditions (L4.9). The values of a(m),
as(m), go(m) and gi(m) may be stored for use in the first order solution or,
more conveniently, these integrations can be performed simultaneously with those
for the higher order solutions.

In the zeroth order equation A, appears as a known parameter obtained from
the similarity solution, ' In the higher order equations the XJ's appear as un-
known parameters. Fortunately, the equations are linear in AJ and of course

the perturbation equations are linear differential equations so it follows that

- 13 =




i superposition of solutions is valid. This property will allow evaluation of i

| the AJ's after the equations have been integrated,

In each higher order approximation the g3 term in the momentum equation |
may be eliminated with the isentropic equation and its integral, gy The inte- ﬂ
grals have been obtained through third order by Freeman. The momentum equation i

then gives higher order perturbation equations of the form

ay = (BJ aJ+CJ a.J +DJ +AJ EJ)/Ao (4.19) l

in which the coefficients Bj through EJ are functions only of known quantities

i
| from lower order solutions. It follows that aJ can be expressed as the linear 1
combination 1
= | . |
ay = ay) + \yay, (4.20) |
so that (4.19) gives two equations J

" _ ]
ay, = (By aj, + Cy ag, + Dy)/A,

!

{

n 1 h) ‘

aj, (B'j aj, + Cy ay, + LJ)/AO : (4.21) |
It is convenient to let the non-zero boundary condition of (L4.2) be satisfied i
by a, , so the remaining perturbations are zero at the shock. Note that the |
denominator, A i the same for all orders of approximation. This term goes 1
|

to zero at m = 0 when 8 = 0 causing computational difficulties which will be

disscussed later.

It will be evident upon substitution of ay into the isentropic equation

that gJ must be of the form

Ry =8y * hy8yy (h.22)

= 1=
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Finally substituting ad and gJ into the energy integral will show JJ to be of
the form
1
- = ] ]
L AJJJZ (JJI+AJJJZ)¢m (k.23)

(o]

where the terms JJ, and Jj, are to be accumulated simultaneously with integra-
tion of (4.21). When Jy, and Jy, have thus been evaluated Aj cen be deter-
mined. After using (4.12) in (4.11) to eliminate zy in favor of iy, (k.23) is
substituted in to the left hend side of (4.11) and the result is then solved

for AJ. The first two of these coefficients are

- I
A, = Jyp * Jolw,B/w~(a+1)1/23 (k.24)

and

2.¢ - ox2
r, = o3 6 axg J) o, 250
Jo It = 223,

where

G = B(B-1) w?/wd + (a+l)(a+l-A ~28w,/u,)
+ (1+Ao) B wz/wo
H = B‘wz/wo)—(wl) (’4.26)

‘The wjy are obtained from (4.7). Expressions for the coefficients A.j through

1 1 4 .
Ky le and Jy, are listed in the Appendix.

Freeman has shown that gi#en approximations through the k'th order with
k z 2,it is possible to obtain an excellent approximation to the shock posi-

tion R(t) as follows. Truncate the A series at the k+2 term and evaluate the

=15 =




last two AJ in terms of those preceeding and known boundaries of the A vs y
curve at y = 1. Thus '

A(l) = )\O + Al 4+ e + Ak + )\k+1 + )\k+2 = 0 (h.27)

1
i

ax(1)/ay

Ay + 2hp + o0 + kA + (Re1)A, 4 (k+2)2,

k+)

(2+a) /4 (4.28)

The higher order A terms in (L4.12) are then zero and all the 2 cén be expres-

sed in terms of Ao through Ak+2‘ If k = 2 the general expression for zJ when

J x5 is
2y = -([l+(J—h)Ao]AuzJ_h + [1+(3-30a 103244
- 2 | ]
G T EE PN PV ¢ T TS DR I NE VALS: (4.29)
UYsing this end (4.12) in (4.4) and (L4.6) then gives z(w) or R(L) for all vulues
of y.

It was found that this procedure works very well for B= 0, but when 8
approaches a + 1 where A = 0, satisfaction of the final slope condition (k.28)
with a limited number of terms causes a false hump in the A-y curve near y = 1.
The procedure was therefore modified through multiplying Ak+2 as obtained by
simultaneous solution of (4.27) and (4.28) by the factor [1-8/(c+l)] and solv-

ing (4.27) for A once again. Thus the need to meet the final slope condi-

k+1

itions is progressively eliminated as B approaches o + 1 to give more realis-

Lie A=y curves,




5. EXTRAPOLATION TO m = O. ;

When § = 0 as it does in the constant energy blast wvuve, integration of

(4.16) will show that aé o and a, * 0 as m * 0 so it follows from (%.1T)

that A > 0. This latter term appears as the denominator of (h.21; so it may

be unticipated that computational difficulties will be encountered near the
mass origin for all orders of approximation. The problem is further compoundecd
in evaluation of the energy integrals which conéain terms proportional to aé
and accumulate rapidly near m = 0. For example if ¥ = 1.1 and o = 1, sixty
percent of the true value ‘of J, is accumulated_in the last one percent of mass
variation. Numericul integration all the way to the origin is clearly impos-
dible yel it iu mundatoryfthut accurate values of JJ be obtained else the next
higher order approximation be seriously in error.

Freeman? mentioned this problem and suggested an "appropriate approxima-
tion formula" bul gave no details. Similar numerical problems arising in the

! and Bach and

Eulerian formation of the problem have been noted by Sakurai
Lee"%. The procedure outlined here was developed by the author and is based

upon the fact that in a region close to the mass origin the pressure term, g,

can be taken to be constant to a very high degree of approximation. Although

the procedure is only necessary when B is close to zero, it is still valid for
Jarpger values of 4 so it can be incorporated into a computer program valid for
all valuces of 8.

Consider the integrand of (4.18) in which the first term is related to

the kinetic energy and the second to the internal energy.

a_t
g ==/ 1,2 8oty
JO = 2(a+1)(ao"(a+l)mao) =t Y—l (501)

3

In the region near the origin, say m < 19" , the density is very low so

it may be anticipated - and verified by numerical experiment - that the first

e




term is much smaller than the second. Furthermore it has been observed from

nunerical integrations that the product ma; approaches zero at nearly the same

Glpe o i ok

rate as a, so that this first term is nearly constant. These numerical inte-
grations also showed g, to be constant to about four significant figurc: in

this region. It follows that taking these factors constant over an interval of

s i e L

Am < 1073 will introduce no significant error in the computation of J.

The majJor contributing factor to the integral is then agaé vhich by use 3

of (4.14) can be expressed in terms of m as

/Y =xg/Y(a+l
agal =(Ko/g,) Ny Ao/ Vet1) (5.2)
which can be integrated analytically if 258 is taken to be constant.
The procedure thnn in Lo integratce numerically from m = | Lo m = § where

(e " g 10-1 and add u corrcection t.erm obtained by analyticnl integration from
0 tu §,i.e.,

1-2,/Y(a+1)
S ] (5.3)

i 1/Y
AJ, = 2(a+l)(a° (a+1)6a )2 + Egi-(gg [I:x;77TZ:IT—
where a4 and aé are evaluated at m = §,
Similar considerations apply to the higher order approximations to J.
In each case the kinetic energy term in the integrand can be taken as constant
over the last integration interval while the internal energy term can be ex-

pressed in terms of a a and esuentially constant ratios such as aj/ao,

o 8o

a}/aé, ete. This method has been checked by letting 6 take on values fraom

10_3 to 10-6 and noting that all give the same final values for each JJ' A

value of 6§ = 10—5 was used in the computations leading to the results reported
in the next section. Formulas for the correction term AJII’ AJ12 ete. are

given in the appendix.
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6. RESULTS

The equations outlined in Sections 3, 4 and the Appendix have been numeri-

~cally integrated with a fourth order Runge-Kutta algorithm in double precision

and extrapolated to m = 0 as discusscd in Section 3. The procedure has been
curried out to the second order in the expansion variable y (some authors! »2»"
preter "third approximation") for plane, cylindrical and spherical blast waves,
i.e., for «a = 0, 1, 2. The range 0 < B < o+l (above which the zeroth order
similarity solution ceases to exist®) was covered for Y = 1.1 and 1.4. The
solution for the case, 8 = a + 1, which corresponds to the well known self sim-
ilar solution for which A = 0 and R = Kt, is computationally unobtainable be-
cause ol a zero divisor problems evident in equation 3.7. However, solutions
tor §§ very close Lo this value (within .01) were obtained easily. Solutions
have also been obtained for other typical values of Y for integer values of B.
Tables 1 Lu 3 are summaries of Lhe expansion coefficients Ay, Ay and
Jdos J1, Jo obtained in the computation. Korobienikov and Chushkins, Sakurail,

Bach and Lee"

have all published values of A; computed in Eulerian coordinates
for $ = 0, Y = 1.4 which agree with those given here. (Note that Bach and Lee
report values of A;/2 while the others give values of A;/(a+l)). The values of
dp and A; for B = 0 and Y = 1.4 are also in agreement to the full six signifi-
cant figures quoted by Bach and Lee. The values of Ay} for 8 = 0 and Y = 1.1 to
3.0 are in agreement with those reported by Freeman, however his values of A,
for B = 1 are in error because he apparently used an incorrcci value of Aj to
obtain them. His values of J;; and J), are, however, correct. As s final check
on numerical accuracy it is noted that the values of J, reported to 4 signifi-
cant figures by Rogers for Y = 1.2 and 1.4 and various B agree with values in

these tables.

It can be seen from the tables that the A coefficients approach zero
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rapidly as B is increased from zero. This is also shown in Figure 1. The max-
imum velue of B is o+l where A = 0 and the shock propagates with constant ve-
locity. This drop off of the decay index implies much stroiger convergence of
the perturbation series as B increases,

Figurc 2 shows typical variations of the J coefficients with B8 for a = 2,
and Y = 1.4, 1t is seen that J, drops off rapidly and J, becames fairly con-
stant while J; takes on an increasing portion of the energy as B increases.
Similar results obtain for other Y and a. !

Radial pressure, density and velocity destributions are presented in
Figures 3 to 5 for « = 2, Y = 1.4 and 8 = 0, l,'2. The hump in the density
distubution for y = .5 and B = 0 is most likely due to truncation of the expan-
sion at the third term. This suggests an upper limit of validity for y = .5,
or u shock Mach number of 1.4, for the sccond order expression when B = 0.
This limit can be raised considerably as B increases as in evidenccd by the
curves for = 1, 2.

As B is increased from zero, the constant energy case, the flow region
rapidly contracts to a thin shell between the shock and the fictitious piston
located at the zero mass position as is evident in Figures 4 and 5. Even when
B = 0, over 99% of the mass is located in the outer half radius of the sphere
but as noted before, over 50% of the total energy can be confined to the inner
1% of the mass because the temperature becomes extremely large in this region.
As 8 approaches at+l the solution approaches the self similar result for A = 0O
and y = constant. At this limit the spherical blast wave flow field occupies
a thin shell within which the velocity, pressuré and density are constant.
Similar results obtain for other Y and a. In particular the profiles for

a=1,8=1and ¥ = 1.4 are given in Figure 6 as replacements for similar

plots given by Freeman which, as noted before, are in error due to his use of

o




the incorrect value of A,
The variation of the decay index, A, and thF shock position, z, with shock }
strength, y, is given in Figure T for a spherical shock with ¥ = 1.4 and 8 = 0.

The decay index was obtained by use of accurate values of A X1 and A, given

0°

P DT %)

in Table 2 and approximate values of A3 and A, obtained by matching boundary
conditions at y = 1 as outlined in section 4. The shock position was obtained
from (4.6) with zy from (4.12) and enough terms of (4.28) to insure that no
truncation error would occur in the sixth significant figure. These results
are compared with a decay index and shock position obtained from tables of
shock position and over-pressure reported by Goldstine and Von Neumann® who
solved the exact partial differential equations by a numerical technique. The
comparison is most favorable over the whole range of y even though the internal
_structure of the flow field cun only be predicted Loy = .5 for 8 = 0. Of
course when B becomes larger Lhe internat approximations improve for lurger y.

The effect of B on decay index und shock position is given in Figures 8
and 9 where A and z ure plotted against shock strength with § as a parameter. b
Note the smooth approach to A = 0 as B approaches a+l in Figure 8.

It is evident in Figure 9 that a constant value of shock strength is ap-
proached in the limit B = a+tl or B8 = 3 in this case. The value can easily be
obtained by noting that a solution of the form z ~ w® is required in which
n = (2+8)/(o+3) = 1 to be consistent with the rest of the family of curves.

Differentiating this relation and using (3.4), the definition of y, gives !
dz/dw = zfw = y-l/? : (6.1)

while Lhe energy equation (2.22) gives

(w/2)**? = 3y = 1f[(a+1)(v-1)] (6.2)
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Eliminating w/z and using the second order approximation for J consistent with

the other curves then yields the following equation which can be solved for

the limiting value of y.

plordhe g . (J1 g l/I(a+l)(Y~l)]) y+J, v (6.3)

Taking ¥ = 1.4, the limits are y = 0.531, 0.528 and 0.542 for a = 2, 1 and O,
respectively. ]

The shock trajectories corresponding to Figures 8 and 9 are given in Fig- i
ure 10. It is clear that there is relatively little difference in trajectories
as B is varied., The major effect of increasing B is the faster decay of shock
strength at low z and slower decay at large z previously shown in Figure 9.

In addition there appeurs to be only a very weak dependence of the trajectory

upon ¥ ns Lhe eurves for ¥ = 1,1 fall in the same narrow band indicated for 1
f t.he Yhe Y oefteel is more evident in the z-y plots of Figure 11 which also
indicate the cffect of o for B = 0.5 in all cases. t

The zpportionment of energy between kinetic and internal modes is also of
interest. These two contributions can easily be separated in the computation
of* the energy integral, J. The fraction of the total energy associated with
kinetic energy is plotted in Figure 12 versus the shock strength with 8 as a
parameter. These results were computed with a three term approximation of J.
Note that the kinetic energy fraction increases with B while in all cases most
of the energy soon is transformed to internal energy as the shock decays and y
increases. The values obtained for y = 0 are in agreement with computations

made by Rogers3.
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Coefficients for Decay Index Expansion as a Function of Energy Input Parameter.

Figure 1
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Coefficients of Energy Integral Expansion as a Function of Energy Input Parameter.

Figure 2
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Flow Field Structure Behind Spherical Blast Wave for Instantaneous Energy Input.
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Flow Field Structure Behind Spherical Blast Wave for Constant Energy Input Rate.
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I Flow Field Structure Behind Spherical Blast Wave for Linearly Increasing Energy
Input Rate. .

Figure 5 : - 31 -
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Flow Field Structure Behind Cylindrical Blast Wave for Constant Energy Input Rate.
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Decay Index and Shock Front Position from Second Order Perturbation Solution (P)
Compared with "Exact Solution" of Goldstine and Von Neumann (G)
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Variation of Decay Index with Shock Strength.

Figure 8
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" Shock Position as a Function of Shock Strength and Energy Input Parameter.

Figure 9
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Shock Position as a Function of Time.

Figure 10
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Shock Positions for Plane, Cylindrical and Spherical Blasts Compared.

Figure 11
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Kinetic Energy Fraction Variation with Shock Strength and Energy Input Parameter.

Figure 12.
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Summary of first and second order equations required for blast wave computation

APPENDIX A

FIRST ORDER:

2y Y-1 L
(A-1) K, = y+1 | (o+1)(v+1)

! (A-2)  Ky; = 2y/(y=1) = (y-1)/2y
(A-3) e, = 1+(y=1)r,/v(a+1)
(A=4) ey = 1 -2 /y(a*l)
(A-5) e3 = 1+ (2y=1),/y(a*1)
(A-6) g = Kf(alal)utol(e*1)
(A=1) Ay = yla+1)[aggs/ag-(ut1)n’ )
(A=8) 1, = ylar1)(2a*x,Im/>
(A-9) C, = y[u(u+l)goaga(')/a(2)+ ro/2)

(A-10) F = y(ag-(a*l)mal)

” ]
a 8% 8o &o
(A-11) B, = B, + Y(a+l)[ao —_— - o= -2m\

"2 '
{ao] a0 2o '

(A-12) €, = Co + vA2/2 - a(a+1)(y-1)ages/ao
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(A<13) D, = Kpaemo/(* D[ (aa1)g! + g 2 /m]
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OECOND ORDER:

(A-23) . K,
(A-24) Ky,
(a-25) @

(A-26) 8,/e,

1
(a-27) &L
80

(A-28)

(A-29) B,
(a-30) ¢,
(A-31) D,
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K11 = A /ag
2
Kin M/Ag = 27/(v=1)° - (v-1)%/8v* = 2%/222
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€L CCKLLLLLKLCLCC BLAST WAVE yVARTABLE ENERGY >>>3>3>>>>>>5553>>>55>>>CALST

APEPREEDLA B = COMPUTER PROGRAMO

PROGRAM CODED BY PROFESSOR E.T., PITKIN
MECHANICAL ENGINEERING DEPARTMENT
YUNIVERSITY CF CINNECTICUTY

STCRRS, CONN., 06268

CBLST
CRLSY
CcBLST
CALSY

FCCCLLLLLLLLLLELLLLL SECIND DRDER COMPUTATICN >>>33355>3>>3>3>5>>>>>>>>CALST

IMPLICIT REAL®8 (A-H,N-2)

ALST

REAL®A MASS, LAMNGLAM] ;) AM2 3 LAMIZLAMSG o KN, KLol AMP ] ,L AMDAy LAMN2 ALST
DIMENSICN 2A11(200),2AP11(200)+,2A12(200)+,ZAP12(200),2G11(200), BLST
12612(200),2A21(200),2A22(200)9ZAP21(200),ZAP22(200),2G21(200), BLSY
?75?2(?00)0((16)0!‘(200)o’lP(ZOO)'Z"(ZOO)oZG(?OO) RZ2(100).0M{ 100) ALST
_EQUIVALENCE (CCLIJLAMN) ) (CU2)oKN)o(CU3)oyKL)g(C(4L)oALP),(C(5)4OM), BRLST

I l((b)oG"OG)o(C(7)vAKll)o(C(8)oAKZl).(C(Q).GN).(C(lO)oRLAM)o RL ST
2 (CO11)aLAML), (CU12) 3ALFA) (CU13),GAMMA)

CCNST

4
10

RUCT INITIAL VALUES F(GR INTEGRATION
SAVE = -,00500

FNRMAT(3F10. 4.15)

READ (554 9END=999) ALFA,RETA,GAMMA KFIELD
L = ALFA ¢+ 00100

P = L+)

ALP = ALFA ¢+ 1.NDO

GPL = GAMMA + 1,.NO

GM = GAMMA - 1,00

GMOG = GM/GAMMA = x=F

LK1l = 2.,DO/GVOG - G“OG/Z.DO

LAMN = 2,00%(ALP-BRETAJ/(2.00¢RETA)

LAMN?Z = (AMN®X?

- — —LAMP]1 = LAMN ¢ 1.0)

20

21

KN = 2, OOtGAMMAt(GWIGDL/ALP)“GA"MAIGPL
K1 0.0

£l 1.00 = LAMN/ALP/GAMMA
£2 1.N0 ¢ GMPGEL AMN/AL®

FA = 1,ND0 ¢ (2.D0%5AMMA = 1, D0)*LAMN/GAMMA/ZALP
KPASSE = |

NV = 12

WRITE(6,40)

WRITF(6,41) ALFALRETA,GAMMA
STEP = SAVE

KK = DABS(.O01DO/STEP) ¢+ ,1DO
NN 21 1=1,15

7(1) = 0.00

MASS 1.D0

70)) 1.00

2(2) GM/GPL/ALP

(%) 2.00/ALP/GPL

J = 191

IM{y) = 1,00

TA(Y) = 1,00

1AF(J) = 2(2)

I211¢Jd) = 0.,D0

O n W

ALST
BLSY
RLSY
eLST
RLSY
RLSY
BLST
AL ST
ALSY
ALST
eLST
BLST
ALST
ALST
BLSY
ALST
RLST
ALST
RLST
BLST
AL ST
AL ST
RLST
ALST
ALST
AL ST
ALST
ALST
ALST
BLST
BLST
ALST
ALST
ALST
BLST
ALST
ALST

— lman-—-—FH!

210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
630
440
450
460
470
&80
490
500




BEST AVAILABLE (OPY

7412(J4) = 0.DO BLST 510
LA21(J) = 0.00 BLST 520
ZA22(J) = 0.00 BLST 530
ZAPL1(J) = 2(5) , RLST 540
ZAP12(J) = 0.D0 BLST 550
IAP21(J) = 0.00 BLST 560
ZAP22(J) = 0.DO RLST 570
IG(J) = KN/Z(2)%*GAMMA BLST 580
2611 (J) = 2G(JI*(AK1L = GAMMA®Z(5)/2(2)) BLST 590
2612(J) = 0.DO BLST 600
2G21(J) = 0.DO BLST 610
2G22(J) = 0.00 RLST 620
25 WRITE(£4642) ZA(D)ZAPLJI) 42 3) 42G( J) o2 N J) BLST 630
IF(KPASS.EQ.2) 62 TN 30 BLST 640
WRITE(6,43) ZALL(J),2APLL(J) »ZAL20J)sZAPL2(J),2(8),12(9) RLST 650
IF(KPASS.EQ.1) GN TO 50 BLST 660
30 WRITE(6444) ZA21(J),28P21(J) 4ZA22(J)¢2AP22(J)92(14)+2(15) BLST 670
40 FRRMAT(///7) RLST 680
41 FORMAT(® ALFA =*,F5.343X,"BETA =',F5,3, 3Xy "GAMMA =',F6.4,//) BLST 690
42 FORMAT(/y3Xy A0 =*,EL0.493X,"AOPRIME =',E10.443X+*JO0 =',E11.5,3X BLST 700
1,°GO ='3EL11.593X, 'MASS =?,F10.3) BLST 710
43 FOPMAT(/s3Xs"AL1="4ELO.%¢3Xy"ALLPRIME=?,E10.493X¢"A12="yE10.493X BLST 720
1y *AL2PRIME="y E10e4y3Xy"J11="yELLeS¢3Xy"J12270E11054/) BLST 730
44 FOPMAT(/43X+'A21=" yE10e4¢3Xy *A21PRIME="? E10e493Xs"A22="9E10.493X BLST 740
1y PA22PRIME=9yE10.493Ky ' J2L="9ELL.5+3X,"J22="E11.5,/) ALST 750
45 FORMAT(/4" DJO ='4FL0.592Xs "EKO ='9F10.592Xy "EFRACO =*,F10.5) BLST 760 i
46 FORMAT(/," RLAM =0 ,F10.592Xy'K21 =',F10.5) RLST 770
47 FOPMAT(/4® DJLL =',Fl0.5+2X9'DJ12 =',F10.5+2X¢ "LAML =',F10.5+2Xy BLST 780
1°J1 ='3F10.542Xs "EKL ='9F10.5¢2X,'K1l =?,F10.5) BLST 790
48 FORMAT(/s® DJ21 ='4F10e592Xy"0J22 =*9FLl0e5¢2Xs"LAM2 =?,F10.5+2Xy BLST 800
1'J2 ='3Fl0.5+2Xs "EK2 =7,F10.5) BLSY 810 |
COMMENCE INTEGRATICN BLST 820 |
50 DO 100 I=1,KK RLST 830 |
100 FALL RUNKUT(Z4MASS,CySTEP,NV) BLST 840
J = J-1 BLST 850
FML = MASS*%(LAMN/ALP) BLST 860
TF(KPASS.EQ.2) 0 TO 98 BLST 870
IM(J) = MASS RLST 880
ZA(JY) = 2(1) RLST 890
7AP(J) = 2(2) BLST 900
7G(J) = KN/ ((Z(L)**L*2(2))**GAMMARFM]) BLST 910 |
7A11(4) = 1(4) RLST 920
ZA12(J) = 7(6) BLST 930
ZAP11(J) = 2(5) . BLST 940
ZAP12(J) = 2(7) BLST 950
LG11(J) = ZG(J)*(AKLL*FM] - GAMMAS(ALFA®2(4)/2(1)+2(5)/2(2))) RLST 960
2G12(J) = 2G(J)*((1.DO-FML)/LAMN-GAMMAR (ALFAXZ(6)/7(1)+2(7)/7(2)))BLST 970 ¢
98 IF(KPASS.EQ.1) GO TN 99 ALST 980 |
ZA21(J) = 2(10) RLST 990 |
7A22(J) = 2(12) ' B8LST1000 |
IAP21(J) = T(LY) RLST1010
TAL2204) = 7(11) RLST1020
TGY = 76110 e LANTRIGTI2(Y) ALST1030
TAY - ltad 0 LAVLe P (n) RLST1040
R -2




ZAPL = Z(S) + LAML*2(T)
2621(J) =(((ZGL/ZG(J) 1%%2-RLAM*%2)/2.D0 -~ GAMMA® (AL FA*Z(10)/Z(1)
1 ¢+ Z(11)/2(2) - (ALFA®(ZAL/2(1))*%2 + (ZAPL1/Z(2))%%2)/2.D0)
2 + AK21*FM1%%2 - KL*RLAM®EM])*2G(J)
71622(J) = ((1.DO-FM1#%2)/2.00/LAMN ~ GAMMAS(ALFA®Z(12)/2(1) +
1 Z(13)/2(2)))*2G 3)
CUT NDOWN STEP SIZE AS MASS APPROACHES ZERO
99 1F(J.E0.101) STEP = STEP/10.DO
1F(J.€0.101) GO TO 101
1F(J.EQ.11) GO TO 101
TE(J.CT.2) 6O TH SO
101 Z3 = =2(3)
ARITE(6442) ZA(J)oZAP( J) 92 3,2G( J)oZM( J)
1FIKPASS.EQ.2) GO TQ 1064
18 = -71(8)
19 = -2(9)
WRITE(6,43) ZAL1(J),2ZAPL1(J), ZAL2(J) sZAP12( J) 428,126
1F(KPASS.EQ.1) GO TO 105
1064 714 = =2(14)
215 = -2(15)
WRITE(64644) ZA21(J) e ZAP21(J) ZA22(J),ZAP22(J), 214,215
105 1F(J.GT.2) GN TO SO
COMPUTE EXTRAPCLATED VALUES FOR MASS = O WITH GO = CONSTANT
ENSTP = =-.00001D0
NO 202 JK=1,?
N0 200 I=1,90
200 CALL RUNKUT(Z,MASS,C,ENSTP,NV)
FML = MASS*&(LAMN/ALP)
GN = KN/((Z(1)#*L*7(2))**GAMMAREML)
73 = =1(3)
WRITE (6042) Z{1)yZ(2)y23GN,MASS
1F(KPASS.EN.2) GD TD 199
I8 = -1(8)
219 = -71(9)
WRITE(6443) 704),2(5)42(6),2(T),28,19
IF(KPA§S.EQ.1) GO TO 201
199 714 = =2(14)
215 = -Z(15)
WRITE(6044) Z(10),Z(11)s2(12)52(13)+214,215
201 1F(JX.EQ.2) GO TO 202 . -
128 = 1(2) ,
14S = 7(4) . bt BT W=
755 = 7(5)
16S = 2(6)  _ e e sl P
778 = 2(7)
GNS = GN
ENSTP = ENSTP/10.00
1F(KPASS.EQ.1) GO TO 202
7108 = 7(10)
I11s + 7(11)
Vs = v )
Livn - Ly
O L IOONTINULE
IH(KPASSEQe2) GN TO 206

b Gl X i o e Clsais R R

8LST1050
RLST1060
RLST1070
ALST1080
ALST1090
BLST1100
ALST1110
RLST1120
BLST1130
BLST1140
RLST1150
RLST1160
RLST1170
RLST1180
ALST1190
BLST1200
BLST1210
BLST1220
BLST1230
RLST 1240
BLST1250
BLST1260
RLST1270
ALST1280
RLST1290
BLST1300
RLST1310
RLSTL320
BLST1330
ALST1340
BLST1350
ARLST 1360
BLST1370
BLST1380
ALST 1390
BLST1400
BLST 1410
ALST1420
RLST1430
BLST 1440
BLST1450
BLST 1460
BLST1470
ALST1480
RLST 1490
RLSY1500
RLST 1510
BLST1520
RLST1530
RLST 1560
BNLST1S50
NLSTL %60
BLSTLI%70
RLSTLISRO




AN = 2(1)
= AN*%*|

- _ANL

GN =

FK11
EK12
DJ11
DJ12
EX11
EK12

ANP = 7(2)
: FAJ = AN -ALP*ANP*MASS
] GNO = (GN/GNS)*GN

«TDO*GN ¢+ ,3DO*GNO

GNKF = GN® (KN/GN)*%(1 .D0/GAMMA )/GM
FJ1 = GNKF#MASS®#E]1/E1

FJ? = GNKFEMASS*%E2/E2

1 FJ3 = GNKF*MASS**E3/E3

8 ANO = AN®XLP - ALP*(GM/GN)*FJ1

1F(ANO.LEs1.D-13) ANO=1.D-13

ANO = ANO**(1.DO/ALP)

ANPO = (2(2)7225)%*2(2)

DJO = GAMMA®MASS*FAJ**2/ALP/2.00 ¢ FJ1

AJO = DJO - 2(3)

EXO = DJO - FJ1 - 2(10)

EFRACO = EKO/AJO

AMASS = 0.DO

WRITE(6942) ANO,ANPO,AJOyGNO,AMASS

WRITE(6,445) DJIOLEKO,EFRACO

All = 2(4)

AP11 = 2(5)

A12 = Z(6)

AP12 = (1)

A110 = (A11/24S)*Al11

A120 = (A12/26S)*A12

AP110 = (AP11/125S)*AP11

AP120 = (AP12/Z7S)*AP12

G1l1l = GN*(AK11*FM] - GAMMA®(ALFA*Z(4)/72(1)¢2(5)/72(2)))
G12 = GN*((1.DO-FML)/LAMN-GAMMA® (ALFA®Z(6V/Z(1)+Z(T)/2(2)))

GAMMA*MASS*FAJ*(LAMP 1#A11/ALP - MASS*AP11)

GAMMA®MASS *FAJ*(LAMPL#A12/ALP - MASS*AP12)

EK1]l + AK11%FJ2 -GM*(ALFA*®AL11/AN+APL11/ANP)*FJ]

EK12 + (FJL1-FJ2)/LAMN - GM*(ALFA®A12/AN+AP12/ANP) %2FJ1
EX11l - 2(11)

Ex12 - Z(12)

AZ8 = DJ11 - 2(8)
AZS = DJ12 - Z(9)
WRITE(6443) A110,AP110,A120,AP120,A28,A29
IM(1) = MASS
ZA(1) = AN
ZAP(1) = ANP
26(1) = GN
ZA11(1) = Al}
1A12(1) = Al2
ZAP11(1) = APl
ZAP12(1) = AP12
7611(1) = G611
Z612(1) = C12
IF(KPASS.EQ.1) GO TO 210
206 WRITE(6,42) ANO,ANPO,AJO,GNO JAMASS
Al = All + LAM1#Al2
AP1 = APLl + LAM1#AP12

BLST1590

ALST1600 _

BLST1610
BLST1620
BLST1630
BLST1640
BLST1650
BLST1660
BLST1670
BLST 1680
BLST1690
8LST1700
BLST1710
BLST1720
BLST1730
BLST1740
BLST 1750
BLST1760
BLST1770
ALST 1780
RLST1790
BLST 1800
BLST1810
BLST1820
BLST1830
BLST1840
BLST1850
RLST1860
BLST1870
8LST1880
BLST1890
BLST1900
BLST1910
BLST1920
BLST1930
BLST1940
BLST1950
BLST1960
BLST1970
BLST1980
BLST1990
8LST2000
BLST2010
BLST2020
RLST2030
BLST2040
ALST2050
BLST2060
BLST2070
RLST2080
BLST2090
BLST2100
BLST2110
ALST2120

e




210

220
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BEST"AVAILABLE copy

A21 = 2(10)

A22 = Z2(12)

AP21 = Z(11)

AP22 = 7(13)

A210 = (A21/210S)*A21
A220 = (A22/112S)%A22
AP210 = (AP21/211S)%AP21
AP220 = (AP22/113S)*AP22
Gl = Gl1 + LAM1%G1?2

EK21 = GAMMA®MASS®(FAJ*(A21*(LAMPL+LAMN) =~ ALP*MASS*AP2]1 + LAM]
1#A1) + (LAMP1#Al ~ ALP*MASS®AP1)*%2/2,D0) /ALP

BLST2130
BLST 2140
RLST2150
BLST2160
BLST2170
BLST2180
8L ST2190
BLST2200
BLST2210
BLST2220
BLST2230

DJ21 = EK21 + AK21#FJ3 - K1*RLAM*FJ2 + FJL1*((Gl/GN)*(ALFA*AL1/AN ¢+ BLST2240
1 AP1/ANP) ¢ ((G1/GN)*%2 - RLAM%%2 &+ GAMMA*(ALFAx{AL1/AN)I**2 ¢+ (AP]1l BLST2250
2/ANP)%%2))/2,D0 - GM®(ALFA%XA21/AN#AP21/ANP) + ALFA*(A1/AN)*{ (ALFA BLST2260

3 -1.00)*A1/AN/2.00+AP1/ANP)) BLST2270
EK22 = GAMMASMASSRFAJR(A22% (LAMPL+LAMN) ~ ALP®MASS®AP22)/ALP BLST2280
NJ22 = EK22 + (FJ1-FJI3)/LAMN/2.D0 - GM=(ALFA*A22/AN+AP22/ANP)%*FJ]1 BLST 2290
EK21 = EK21 - Z2(8) RLST2300
EK22 = EK22 ~ 2(9) BLST2310
AZl4 = DJ21 - Z(1%) BLST2320
Al1S = DJ22 - 2(15) 1 BLST2330
WRITE(6,44) A210,AP2104A220,AP220,A214,4A215 BLST2340
IA21(1) = A2} BLST 2350
ZA2211) = A22 BLST 2360
ZAP21(1) = AP21 8LST2370
TAP22(1) = AP2? RLST 2380
7621(1) = ({(Gl/GN)%®%2 - R AM%%2)/2,00 - GAMMA* (ALFA*2(10)/2(1) BLST2390

1 ¢+ 2(11)/72(2) - (ALFA*( A1/2(1))**2 + ( AP1/2(2))%%2)/2.00) ALST2400

2 ¢+ AK21#FM]1%%2 - K1*RLAMEFM])*GN BLST2410
1G22(1) = ((1,00-FM1*%2)/2.D0/LAMN - GAMMA*(ALFA*Z(12)/2(1) + ALST2420

1 Z(13)/2(2)))*GN BLST2430
IFIKPASS.EQ.2) GO TO 220 BLST2440

COMPUTE LAMEDAS ANC ENERGY INTEGRAL CONTIBUT IONS BLST 2450
OMEGO = 2.,D0/(LAMN+2.D0) ALST 2460
OMEGYl = (2.DO*LAMN+2.D0)/(3.00*LAMN+2.D0) BLST2470
LAM]1 = (1.D0/GM/2LP=-AZ8)/{AZ9+AJ0O*(BETA*OMEG]L/OMEGO-ALP)/LAMN2) BLST 2480
RLAM = LAM1/LAMN BLST2490

Kl = AK]1l1 - RLAM BLST2500
A-21 = AK11%RLAM - 2.DO/GMOG/GM - GMOG**2/8.D0 - RLAM®%2/2.D0 BLST2S510
Ay.. = Al8 ¢+ LAM]1*AZ9 BLST2520
EX1 > EK]1 + LAM1=%EK]2 BLST 2530
WRITE(6¢4T) DJL1+DJ12LAM]AJ]LEK]L K] BLST2540
WRITE(6+46) RLAM, AK21 BLST 2550
NV = 15 ] RLST 2560
KPASS = 2 RLST2570
GO T0 20 RLST 2580
RZ1 = -LAM1/LAMN2 BLST2590
OMEG2 = (44DO*LAMN+2,00)/(5.00*%LAMN+2.00) BLST2600
SA = (BETA*OMEG2/0OMEGO - ALP)/2.D0 BLST2610
S8 = —-AJO*SA/LAMNZ2 8LST2620
SA =AJO*BZ1%%2% (SA®LAMPL + BETA*(RETA~1.00)*(OMEG1/OMEGO) *%2 BLST 2630

142400 + ALP*({(ALFA+2,D0)/2.00 ~ BETA*OMEG1/0OMEGO)) BLST2640
LAM2 = (SA - AZl4)/(AZ15 - SB) BLST 2650
LAMG =—(1,00-BETA/ALP) *((ALFA+2,00)/4,00 ~ LAM2 - 2.DO%*LAM1 - BLST 2660

*,




BEST AVAILABLE COPY

1 3.DO*LAMN)} BLST2670

LAM3 = =LAMN = LAM] - LAM2 - LAMG BLST 2680

AJ2 = AZl4 + LAM2#%AZ1S BLST 2690

AN EK2 = EK2l + LAM2%EK22 ‘ B ol 8LST2700
WRITE(6+48) DJ21,0J22,LAM2,AJ2,EK2 BLST 2710
_COMPUTE SHCCK TRAJECTORY -y B 8LST2720
WRITE(6,40) B8LST 2730

_____Bl0 = (((2.DO+BETA)/ (ALt +3,D0))**BETA/AJQ)**{1,D00/(ALP-BETA)) BLST2740
RZ(1) = BZ1 BLST2750

B BZ(2) = -(1AM2 + LAMP1#| AM1*RZ71)/2,D0/L AMN2 _BLST 2760
RZ(3) = —~(LAN3+(LAMPL+LAMN)*LAM1*BZ (2)+LAMPL® AM2+*RZ1)/3.D0/LAMN2 BLST2770
 Bl(4) = =~({1LAM4+(1.D0+3,DO*LAMN) ®LAM1I*BZ (3)+(LAMPL+LAMN)*L AM2*872( 2)BLST 2780
1+L AMP1*LAM3%RBZ1)/4 .DO/LAMN2 8LST2790

e DN 22) K=5,100 _ = = _ BLST2800
AK = K 8LST 2810

BZ(K) = =((1.,D0+(AK~4.,DO)*LAMN)*BZ(K=-4)¢LAM& + (1.D00+(AK~-3,00) BLST2820

1SLAMN ) *B7(K=3) *LAM3+( 1.D0+ ( AK=2, DO)*LAMN) *BZ (K-2) L AM2 BLST2830

2% (1.00¢({AK=1,D0)*LAMN)*BZ(K-1)*LAML)/LAMN2/AK _ ALST2840
221 OM(K) = 1.,D00/(1.D0+.5D0/(AK+1.DO/LAMN)}) 8LST2850

= OM{1) = OMEGI - ) BLST 2860
OM(2) = CMEG2 ALST2870

- + + A MN o ~ . BLST2880

OM(4) = 1.00/(1.D0+.5D0/(4.D0+1.D0/LAMN)) BLST 2890

I Y = 0.0Q e e BLST2900
DO 225 1=1,20 BLST 2910

SUMZ2 = Q.DO0 e ALST2920

SUMOD = 0.,D0 BLST2930

DO 222 K=1,100 B8LST 2940

TERMZ = BZ(K)®Y%eK 8LST2950

TERMO = OM(K)*TERMZ BLST2960
IF(TERMN.LTe1.D-5.AND. TERMZ ,LT.1.D0-5) GO TO 223 8L ST2970

SUMZ = SUMZ + TERMZ 8LST2980

222 SUMO = SUMD + TERMD BLST2990
223 FIRST = BZO®Y**(1.D0/LAMN) 8LST3000

BZS = (1.D0 +# SUMZ)*FIRST RLST3010

OMEGA = (OMEGO + SUMO)*FIRST®DSQRT(Y) 8LST3020

LAMDA = LAMN + LAML®Y + LAM2&Y®%2 + LAM3®Y$%3 + LAMGEYRES 8LST3030

AJ = AJO + AJL®Y + AJ2%Y*s2 BLST 3040

EK = EKQ + EK1%Y + EK2&Y&%2 8LST3050

EFRAC = EK/AJ BLST3060
WRITE(6,4%40) Y,OMEGA,B2S,AJyEFRAC,LAMDA 8LST3070

225 Y = Y + ,05D0 BLST30R0
WRITE(6,442) ALFABETA,AJOsAJL AJ2sLAMN,LAML ;L AM2,LAM3,L AM4, 8LST 3090

1 A78,A299AZ14,AZ15,6AMMA, SAVE BLST3100
"OMPUTE FLOW FIELD BLST3110
IF(XFIELD.EQ.O0) GC TO 10 8LST 3120

Nno 350 [I1=1,9 8LST3130

Y = 0.1N0%(11-1) BLST3140
WRITE(6,40) 8LST 3150

LAMDA = LAMN + LAML®Y + LAM2%Y%&2 &+ LAM3®Y®$3 + LAMARYEES 8LST3160
WRITE(6+445) Y,LAMDA ALST3170

WRITE (64446) ALST 3180

DO 350 KK=1,110 8LST 3190
IFIXK.EQ.1) GO TO 302 'BLST3200




BT AVALABLECOPY ]

TF(MCD((KK=1)45)eNE.O.AND.KK.LT.100) GO TO 350 BLST3210 J
IF (KK.LT.92) GO TN 302 ALST 3220
1F(KK.GT.100) GO TOQ 301 , BLST3230
JJ = 101 - (KK=-91)%*10 BRLST 3240
67 TO 303 BLST3250
301 JJ = 111 - KK BLST 3260
G0 7O 303 8LST 3270
302 JJ = 192 - KK ALST3280
303 ZAL1 = Z2A11(JJ) ¢ LAML#ZA12(JJ) ALST3290
TA2 = ZA21(JJ) + LAM2%7A22(JJ) RLST3300
ZAPL = ZAPL1(JJ) ¢ LAML*ZAP12(JJ) i BLST3310
ZAP2 = ZAP21(JJ) ¢ LAM2%ZAP22(JJ) BLST3320
ZAT = ZA(JJ) ¢ ZALRY & ZA2%Y%%2 BLST3330
ZAPT = ZAP(JJ) ¢ ZAPL%*Y + 7AP2%Y%%2 BLST3340
V = ALP*ZAT*%L*2APT BLST3350
VEL = ZAT - ALP*IM(JJ)*ZAPT + LAMDA*Y*(ZA1¢2.D0*ZA2%Y) BLST3360
16T = 2G(JJ) + (2G11(JJ) ¢ LAMLI*2GL2(JJ))*Y +(2G21(JJ)+LAM2% BLST3370
1 2G22(JJ))*Y%%2 BLST 3380
[F(KK.GTel) GO TO 305 BLST3390
IGTF = 26T BLST3400
VF =V BLST3410
VELF = VEL ALST3420
305 RHC = VF/V BLST 3430
IGT = 2GT/2GTF BLST 3440
VELR = VEL/VELF BLST3450
WRITE(6,448) ZM(JJ)oZAT,2ZGT,RHOy VELR BLST3460 |
350 CONTINUE BLST3470
60 T0 10 BLST 3480
440 FOPMAT(® Y =',F6e3,' OMEGA =*',El1.5,' 2 =*',El1.54' J =*,F10.5 BLST3490
le* KE/J =*yF10.59" LAMDA =',F10.5) BLST3500

442 FOPMAT(/,' SUMMARY®,/,* ALFA=*,F10.5+2X,*'BETA=*,F10.5¢2X,y*J0="*, 8L ST3510
LF10e5¢2Xe*J129,F1l0.592X9*J2=* ¢Fl0e5¢/9® LAMO='yF10.5¢2X,"LAML=', RLST3520
2F10.592X o' LAM2=? (F10.592Xy 'LAM3= ¢ F104592Xs ' LAMG="*yF10.5¢/y ' J11='BLST 3530
3,F10.592Xy *J122 (FL10e502X9'J21 20 ¢F106502X9*J222°9yF10.54/9' GAMMA='RLST3540

4¢Fl0.592Xy *STEP=9,F10.5) BLST3550
445 FORMAT(/,' ¥ =9 ,FS5.2¢2Xs*LAMDA =*,F10.5) ALST 3560
4686 FNRMATI 64X, 15X, *MASS*, 13X, *"RADIUS? 411X, *PRESSURE®, 12X y*DENSITY* BLST3570

L LIXy VELOCITY® g /70 . Lstaseo |
4468 FORMAT(4X,5F19.5) AL ST3590
999 STOP BLST3600

END BLST 3610
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SURROUTINE FCT(Z,2P,CyM) FCT 10
IMPLICIT REAL*8 (A-H,0-2) FCT 20
REAL®S LAMN,KNyMyLAM]L,K1,LAMP] . FCT 30
DIMENSION Z(15),2P(15),C(16) FCT &0
C AND Z TRANSFERS FCYT SO
IF(M.NE.1.DO) GC TN 10 FCT 60
LAMN = C(1) FCT 70
KN = C(2) : FCT 80
K1 = C(3) FCT 90
ALP = C(4) FCT 100
GAMM = C(5) FCT 110
GMCG = C(6) FCT 120
AK1l = C(7) FCT 130
AK21 = C(8) FCT 140
RLAM = C(10) FCT 150
LAM1 = C(11) FCT 160
ALF = C(12) FCT 170
GAM = C(13) FCT 180
LAMPL = LAMN ¢ 1.00 . FCT 190
L = ALF + .0100 X FCT 200
10 AN = Z2(1) FCT 210
ANP = 2(2) FCT 220
COMPUTE COMMON TERMS FCT 230
ANL = AN®sL FCT 240
FML = Mss(LAMN/ALP) FCT 250
GN = KN/(ANL®ANP)®sGAM/FM1 ' FCT 260
FAJ = AN ~ ALPSMSANP FCY 270
AR = ALP#GAMS({ANL*GN/ANP - ALP*Ms%2) . . FCT 280
COMPUTE ZERO ORDER DERIVATIVES FCT 290
R = ALP*GAM%(2,00%ALF + LAMN)*M/2.DO FCT 300
CO = GAMS(LAMN/2.D0 + GNSALF*ALPSANL®ANP/AN®%2) FCT 310
7P(1) = ANP FCT 320
IP(2) = (B®ANP = CO®AN = GN®ANL®LAMN/M)/AA FCT 330
EKO = GAM*FAJ*%2/ALP/2,D0 FCT 340
ZP(3) = EKQ + GN®ANL®ANP/GAMM FCT 350
COMPUTE FIRST ORDER DERIVATIVES FCT 360
All = 2(&) FCT 370 |
APl = 7(5) FCT 2380
Al2 = 2(6) FCT 390
AP12 = 2(7) FCT 400 |
ANPP = 2P(2) FCT 4«10 &
GNP = ~GN® (LAMN/ALP/M ¢ GAM*(ALF*ANP/AN+ANPP/ANP) ) FCT 420
RB = ALP*GAMS(ANL*(GN*ANPP/ANP*%2 - GNP/ANP =~ ALF*GN/AN) FCT 430
1 -2.D0%LAMN®M) ¢+ PR FCT &40
CC = CO + GAVSLAMN®#2/2,.D0 - GAMM®ALF sALP®ANL®GNP/AN FCT 450
DD = AK11*FML*ANL*(GNP®ALP ¢ GN*LAMN/M) FCT 460
EE = (ANL®ALFSGNP = DD/AK11)/LAMN - FAJ*GAM/ 2,DO FCT 470
1P(4) = AP11 FCT 480
IP(5) = (BRA®AP11+4CC*ALL1+DD)/AA . FCT 490
IP(6) = AP12 . FCT 500
IP(7) = (BR&AP12+¢CC*AL12+EE)/AA FCT S10
1F(K] NF.0.D0) GO TO 100 FCT S20
EKL1Ll = GAMSFAJS(ALL*LAMPL=-ALP#M®AP1] )/ALP FCT 530
£K12 = GAMSFAJ*(AL2%L AMP 1-ALPSM2AP 12 )/ALP FCT 5S40
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IP(8) = EK11l + GN®ANL*{AK11*ANP*FM] /GAMM=AP]1-ALF*ANP*AL1/AN) FCT 5S0
ZP(9) = EK12 + GN®ANL *(ANP#(1.D0-FM1)/GAMM/LAMN - AP12 FCT 560
1 - ALF*ANP*A12/AN) FCT ST0
IP{10) = EKO N , L FCT S80
2P(11) = EK11 FCT 590
_IP(12) = EK12 FCT 600
RETURN FCT 610
COMPUTE SECCND ORDER DERIVATIVES FCT 620
100 A1l = All + LAM1#%A12 FCT 630
AP)l = AP]l + LAM1%AP]12 - FCT 640
APP1 = ZP(S) + LAMI#ZP(T) FCT 650
-6l = GN*(RLAM - GAM®(ALF*A]/AN + AP]/ANP) + K1l&FM]1 ) FCT 660
GP1 = GL*GNP/GN + GN&®(K1SLAMN®FM1/M/ALP ~ GAM®(ALF*(AP1/AN-A1 FCT 670 |
1*ANP/AN®%2) + (APP1/ANP-APL*ANPP /ANP2#2))) FCT 680 |
A21 = 2(10) FCT 690
____AP2Y = FQA) ~ FCT 700
A22 = 2(12) FCT 710
o _AP22 = 7(13) PR FCT 7120
BRAR = BB - 2.00%ALP*GAM*MELAMN FCT 730
CCC = CC ¢ GAM®LAMN®(1,00¢2.500%LAMN) FCT 740
OND = AK2] SLAMNSFM]*%2&(GNP/LAMN2,DO*GN/ALP /M) - KL#L AMLlSFM1%* FCT 750
L1(GNP/LAMN+GN/ALP/M) + GNP*(GAMS(ALF*(AL/AN)**2¢(AP)/ANP)%*%*2) - FCT 760
2(G1/GN)*$2 -RLAM$%2) /2, 00+GP1*(G)/GN+ALF#AL /AN) +GAMSGN*( AL F#A 1+ FCT 770
J(AN®AP] -AL*ANP )/AN*%3 + (ANP*APL*APP1-AP1%%2¢ANPP)/ANP*#%3) ‘ FCT 780
DDD = DDD*ALP*ANL + GAMSLAM1*(A1%(1.D0+4.DO*LAMN) - 3,D0%ALP*M& FCT 790
1 AP1)/2.DQ + ALP*ALF*(ALF-1,00)*A1%%28GNP/2,00 ) FCT 800
EFE = ,SO0%ALPE(ANLE®GNP%(]1.,D0-FM1%%2)/LAMN + GAM#H#ANP) - FCT 810
1 ANL®GN#FM] *%2 /M - GAM*AN/2,00 T FCT 820
ZP(10) = AP21 FCT 830
_ ZP(11) = (RBB*AP21 ¢CCC*A21+DDD)/AA ... FCT 840
IP(12) = AP22 FCT 850
N IP(13) = (BBR*AP22+CCC*A22+¢EEE)/AA FCT 860
621 ={{(Gl/GN)*#2-RLAMS%2)/2.D0 + AK21*FM1*s2 ~ RLAMSK1%FM] £CT 870
1 -~ GAMS(ALF*(A21/AN~-(AL/AN)*%2/2.00) + AP21/ANP ~ (AP1/ANP)%x%2 FCT 880 |
2/2.00)) *GN FCT 890
- = & ~FM1%x% AM DO - GAMX(ALF*A22/AN¢AP22/ANP)) FCT 900
EK2] = GAMK(FAJ®(LAML*Al ¢ (LAMPL+LAMN)*A2] - ALP*M#AP21) FCT 910
1 + (LAMP1#A] - ALP*M®APL)%%2/2.D0)/ALP FCT 920
IP(14) = EK2]1 +ANL*ANP*((ALF#A21/AN + AP21/ANP + (APL/ANP+(ALF FCT 930
e 1-1.D0)%A1/AN/2.DO)*ALF*AL/AN) *GN¢G1* (AP 1/ ANP¢ALF#*A]l /AN) +G21) /GAMM FCT 940 |
EK22 = GAMX(FAJ*( (LAMP 1+LAMN )*A22 - ALP*M®AP22))/ALP FCT 950
IP(15) = EK22 + ANL*ANP*(GN* (AL F#A22/AN+AP22/ANP) ¢ G22)/GAMM £CT 960
1P(8) = EK21 FCT 970
IP(9) = EK22 FCT 980
RETURN ] FCT 990
END FCT 1000
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SUBRCLUTINE RUNKUT(Z¢X4sCoHoN) RNKT
CONSTANT STEP, FOURTH NRDER RUNGE-KUTTA INTEGRATION ALGORI THM RNKT
ITMPLICIT REAL®S (A-H,0-1) RNKT
DIMENSION Z(15),C(16) Y(15) RKL(15),RK2(15)9sRK3(15) RK&(15) RNKT
H2 = H/2.00 RNKT
CALL FCT(Z RKL,CyX) RNKY
00 10 J=]14N RNKT

10 YUJ) = 2(J) ¢+ H2®RK1(J) RNKY
X = X+ H2 RNKT
CALL FCTU(Y,RK2,Cy X} RNKT
N0 11 J=1,N RNKT

11 Y(J) = Z(J) & H2%RK2(J) RNKY
CALL FCTI(Y,RK3,C,X) RNKY
DO 12 J=1yN RNKT

12 Y(J) = 2(J) ¢+ H *RK3(J) RNKT
X = X¢& H2 RNKT
CALL FCT(YRK&,CyX) RNKT

D0 13 J=1,N RNKY

13 Z(J) = Z(J) ¢ HE(RKL(J)*2.00%(RK2(J)*+RKI(J))+RK&(I) )}/6.00 RNKT
RETURN RNKT

END ' RNKT
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